Q1.

2		(a)	speck of light that moves haphazardly/randomly/jerkily/etc.		B1 B1	[2]
		(b)	randomness of collisions would be 'averaged out' so less (haphazard) movement (do not allow 'more massive so less movement')		B1 B1	[2]
Q2.						
3	(a)		n of (random) kinetic and potential energies he atoms/molecules of the substance	M1 A1		[2]
	(b)	(i)	potential energy unchanged as atoms remain in same positions allow 'reduced because atoms slightly closer together' vibrational kinetic energy reduced because temperature lower so internal energy less	M1 M1 A1		[3]
		(ii)	potential energy increases because separation increases kinetic energy unchanged because temperature unchanged so internal energy increases	M1 M1 A1		[3]
Q3.						
4	(a)	mas	s per unit volume (ratio idea must be clear, not units)	В1		[1]
	(b)		pressure is same at the surface of mercury because at same horizontal level	В1		[1]
			$h\rho q$ is same for both $53 \times 10^{-2} \times 1.0 \times 10^{3} \times g = 71 \times 10^{-2} \times \rho \times g$ $\rho = 7.5 \times 10^{2} \text{ kg m}^{-3}$	B1 C1 A1		[3]
Q4.						
	3	(a) r	nass / volume (ratio idea essential)	В1		[1]
	į	(b) (i) mass = $Ah\rho$	В1		[1]
		(i	ii) pressure = force/area weight (of liquid)/force (on base) = $Ah\rho g$ pressure = $h\rho g$	B1 B1 A0		[2]
	į	(c) (i) ratio = 1600 or 1600:1	A1		[1]
		(i	i) ratio = $\sqrt[3]{1600}$ = 11.7 (allow 12)	C1 A1		[2]

(d)	(i)	density of solids and liquids are (about) equal	B1	[1]
	(ii)	strong forces: fixed volume rigid forces: retains shape / does not flow / little deformation (allow 1 mark for fixed volume, fixed shape)	B1 B1	[2]
Q5.				
4	(a)	(i) solid has fixed volume and fixed shape/incompressible	B1	[1]
		(ii) gas fills any space into which it is put	B1	[1]
	(b)	atoms/molecules have (elastic) collisions with the walls (of the vessel) momentum of atom/molecule changes so impulse (on wall)/force on wall random motion/many collisions (per unit time) gives rise to (constant) force/pressure	B1 B1 B1	[4]
	(c)	spacing (much) greater in gases than in liquids/about ten times either spacing depends on $1/\sqrt[3]{\rho}$ or ratio of spacings is about 8.8	C1 A1	[2]
Q6.				
6	(a)	any two of: large number of molecules / atoms / particles molecules in random motion no intermolecular forces elastic collisions time of collisions much less than time between collisions volume of molecules much less than volume of containing vessel	B1 + B1	[2]
	(b)	molecules collide with the walls <u>change in momentum</u> of molecules implies force (on molecules) molecules exert equal and opposite force on wall procesure is exercised effect of many collisions.		
		pressure is averaging effect of many collisions (any three statements, 1 each)	В3	[3]

Q7.

7	' (a)	density in solids and liquids similar spacing in solids and liquids about the same density in gases much less as spacing in gases much greater	M1 A1 B1	[3]
	(b)	density = mass / volume mass = 1.67×10^{-27} kg and volume = $4/3 \pi r^3$ density = $(1.67 \times 10^{-27}) / 4/3 \times \pi \times (1.0 \times 10^{-15})^3$	C1 C1	
		$= 3.99 \times 10^{17} \text{ kg m}^{-3}$	A1	[3]
	(c)	atoms / molecules composed of large amount of empty space / nucleus has very small volume compared to volume of atom / space between atoms in a gas is very large	В1	[1]
Q8.				
\$	3 (a	$V = h \times A$ $m = V \times \rho$ $W = h \times A \times \rho \times g$ $P = F \mid A$	B1 B1 B1	
		$P = h \rho g$ P is proportional to h if ρ is constant (and g)	В1	[4
	(b	density changes with height hence density is not constant with link to formula	B1 B1	[2
Q9 .				
4	(a)	pressure = force / area (normal to force)	A1	[1]
	(b)	molecules/atoms/particles in (constant) random/haphazard motion molecules have a change in momentum when they collide with the walls (force exerted on molecules) therefore force on the walls reference to average force from many molecules/many collisions	B1 M1 A1 A1	[4]
	(c)	elastic collision when kinetic energy conserved temperature constant for gas	B1 B1	[2]

Q10.

4	(a)		rus: cell with particles e.g. smoke (container must be closed) in showing suitable arrangement with light illumination and microscope	B1 B1	[2]
	(b)		/ flashes of light om motion	M1 A1	[2]
	(c)		see what is causing smoke to move hence molecules smaller than particles	(B1)	
		continu	ous motion of smoke particles implies continuous motion of molecules	(B1)	
		random	motion of particles implies random motion of molecules	(B1)	
				max. 2	[2]
Q11.					
5	i (a)		metal: crystalline / lattice / atoms in regular pattern (atoms in regular) pattern that repeats itself (within crystal) polymer: long chains of atoms / molecules chain consists of 'units' that repeat themselves	B1 B1 B1	[2] [2]
	(b)	(i) (ii)	e.g. latex is soft / not strong / flows / ductile elastic limit easily exceeded (allow any two sensible comments, 1 each) more solid / does not flow / stronger / higher ultimate tensile stress more brittle elastic limit much higher increased toughness (any two, 1 each)	B1 B1	[2]
Q12.					
5	(a)		rard / random / erratic / zig-zag movement ske) particles (do not allow molecules / atoms)	M1 A1	[2
	(b)		is due to unequal / unbalanced collision rates (on different faces) al collision rate due to) random motion of (gas) molecules / atoms	B1 B1	[2
	(c)	either or	collisions with air molecules average out this prevents haphazard motion particle is more massive / heavier / has large inertia (M1) collisions cause only small movements / accelerations (A1)	M1 A1	[2

Q13.

2	(a)	(i)	the	hase) change ermal energy o not allow 'co	required	to mainta	in cor	our nstant ter	nperature			B1	[1]
		(ii)	bo e.g. ev	aporation tak illing takes pla aporation occ illing occurs a	ace in boo	dy of the I temperat	liquid tures				l l	B1 B1	[4]
	(b)	(i)	volume	$e = (\frac{48}{4.5} =)$	10.7 cm ³							A 1	[1]
		(ii)	= 1.8 : 2 sepa	me = 10.7 / (× 10 ⁻²³ cm³ . aration = ³ √(1.8 × 10 ⁻²								[1]
			= 2.6	× 10 ⁻⁸ cm							/	A1	[1]
											Г	Γotal	l: 8]
Q14.													
2	crys	tallin	lone	ms / ions / pa g range order	/ orderly	10.00	arrar	ngement			į	В1	
	poly	mer:	16	tice) repeats i g chain moled		ains of m	onom	ers	(1)			В1	
	amo	orpho	ous: disc	ne cross-linki ordered arran ordering is s	gement d	of molecu					1	В1	
	(thre	ee 'B	1000000	plus any othe		500			(1)		1	B2	[5]
Q15.													
1	(a)	den	sity = ma	ass / volume							В1	[1	1]
	(b)			juids and solid					to about	2×	В1		
		or d	ensity of	gases much	lower her	nce spacir	ng mu	ch more			B1	[2	21
	(c)	(i)	density	= 68 / [50 × 6 = 2520 (allow	600 × 900 v 2500) kç) × 10 ⁻⁹] g m ⁻³					C1 A1		21
		(ii)		<i>A</i> × 9.81 / [50 × ! × 10 ⁴ Pa	600 × 10) ⁻⁶]					C1 C1 A1		31

Q16.

3	• ((a) p	oressure = force / area		В1	[1]	
	(ı	nolecules collide with object / surface and rebound nolecules have change in momentum hence force acts		B1 B1		
	fewer molecules per unit volume on top of mountain / temperature is less hence lower speed of molecules hence less pressure						
	((c) (i) $\rho = m/V$ $W = V\rho q = 0.25 \times 0.45 \times 9.81 \times 13600$ = 15000 (15009) N		C1 C1 A1	[3]	
		(i	i) $p = W/A$ (or using $p = \rho gh$) = 15009 / 0.45 = 3.3 × 10 ⁴ Pa		A1	[1]	
		(i	i) pressure will be greater due to the air pressure (act	ing on the surface of the lig	juid) B1	[1]	
Q17.							
3	(a)	met	or long range order (of atoms /	molecules / ions)	В1		
	polyi		atoms / molecules / ions) apphous: disordered / irregular arrangement	tangled chains (of atoms / molecules) or long chains (of atoms / molecules / ions) disordered / irregular arrangement or short range order	В1		
			(of atoms / molecules / ions)		B1	[3]	
	(b)		al: straight line or straight line then curving with less pomer: curve with decreasing gradient with steep increa		B1 B1	[2]	
Q18.							
1	1 volume = $\pi (14 \times 10^{-3})^2 \times 12 \times 10^{-3} (=7.389 \times 10^{-6} \text{ m}^3)$ density = mass / volume [any subject]						
			= $6.8 \times 10^3 \times 7.389 \times 10^{-6} = 0.0502$ t = mg = $0.0502 \times 9.81 = 0.49$ N (mark not awarded if not		C1 A1	[4]	

