Q1. | 2 | | (a) | speck of light that moves haphazardly/randomly/jerkily/etc. | | B1
B1 | [2] | |-----|-----|-------|---|----------------|----------|-----| | | | (b) | randomness of collisions would be 'averaged out'
so less (haphazard) movement
(do not allow 'more massive so less movement') | | B1
B1 | [2] | | Q2. | | | | | | | | 3 | (a) | | n of (random) kinetic and potential energies
he atoms/molecules of the substance | M1
A1 | | [2] | | | (b) | (i) | potential energy unchanged as atoms remain in same positions
allow 'reduced because atoms slightly closer together'
vibrational kinetic energy reduced because temperature lower
so internal energy less | M1
M1
A1 | | [3] | | | | (ii) | potential energy increases because separation increases kinetic energy unchanged because temperature unchanged so internal energy increases | M1
M1
A1 | | [3] | | Q3. | | | | | | | | 4 | (a) | mas | s per unit volume (ratio idea must be clear, not units) | В1 | | [1] | | | (b) | | pressure is same at the surface of mercury because at same horizontal level | В1 | | [1] | | | | | $h\rho q$ is same for both
$53 \times 10^{-2} \times 1.0 \times 10^{3} \times g = 71 \times 10^{-2} \times \rho \times g$
$\rho = 7.5 \times 10^{2} \text{ kg m}^{-3}$ | B1
C1
A1 | | [3] | | Q4. | | | | | | | | | 3 | (a) r | nass / volume (ratio idea essential) | В1 | | [1] | | | į | (b) (| i) mass = $Ah\rho$ | В1 | | [1] | | | | (i | ii) pressure = force/area weight (of liquid)/force (on base) = $Ah\rho g$ pressure = $h\rho g$ | B1
B1
A0 | | [2] | | | į | (c) (| i) ratio = 1600 or 1600:1 | A1 | | [1] | | | | (i | i) ratio = $\sqrt[3]{1600}$
= 11.7 (allow 12) | C1
A1 | | [2] | | (d) | (i) | density of solids and liquids are (about) equal | B1 | [1] | |-----|------|---|----------------|-----| | | (ii) | strong forces: fixed volume
rigid forces: retains shape / does not flow / little deformation
(allow 1 mark for fixed volume, fixed shape) | B1
B1 | [2] | | Q5. | | | | | | 4 | (a) | (i) solid has fixed volume and fixed shape/incompressible | B1 | [1] | | | | (ii) gas fills any space into which it is put | B1 | [1] | | | (b) | atoms/molecules have (elastic) collisions with the walls (of the vessel) momentum of atom/molecule changes so impulse (on wall)/force on wall random motion/many collisions (per unit time) gives rise to (constant) force/pressure | B1
B1
B1 | [4] | | | (c) | spacing (much) greater in gases than in liquids/about ten times either spacing depends on $1/\sqrt[3]{\rho}$ or ratio of spacings is about 8.8 | C1
A1 | [2] | | Q6. | | | | | | 6 | (a) | any two of: large number of molecules / atoms / particles molecules in random motion no intermolecular forces elastic collisions time of collisions much less than time between collisions volume of molecules much less than volume of containing vessel | B1 + B1 | [2] | | | (b) | molecules collide with the walls <u>change in momentum</u> of molecules implies force (on molecules) molecules exert equal and opposite force on wall procesure is exercised effect of many collisions. | | | | | | pressure is averaging effect of many collisions (any three statements, 1 each) | В3 | [3] | Q7. | 7 | ' (a) | density in solids and liquids similar spacing in solids and liquids about the same density in gases much less as spacing in gases much greater | M1
A1
B1 | [3] | |-------------|-------|--|----------------------|-----| | | (b) | density = mass / volume
mass = 1.67×10^{-27} kg and volume = $4/3 \pi r^3$
density = $(1.67 \times 10^{-27}) / 4/3 \times \pi \times (1.0 \times 10^{-15})^3$ | C1
C1 | | | | | $= 3.99 \times 10^{17} \text{ kg m}^{-3}$ | A1 | [3] | | | (c) | atoms / molecules composed of large amount of empty space / nucleus has very small volume compared to volume of atom / space between atoms in a gas is very large | В1 | [1] | | Q8. | | | | | | \$ | 3 (a | $V = h \times A$
$m = V \times \rho$
$W = h \times A \times \rho \times g$
$P = F \mid A$ | B1
B1
B1 | | | | | $P = h \rho g$ P is proportional to h if ρ is constant (and g) | В1 | [4 | | | (b | density changes with height hence density is not constant with link to formula | B1
B1 | [2 | | Q9 . | | | | | | 4 | (a) | pressure = force / area (normal to force) | A1 | [1] | | | (b) | molecules/atoms/particles in (constant) random/haphazard motion molecules have a change in momentum when they collide with the walls (force exerted on molecules) therefore force on the walls reference to average force from many molecules/many collisions | B1
M1
A1
A1 | [4] | | | (c) | elastic collision when kinetic energy conserved temperature constant for gas | B1
B1 | [2] | | | | | | | Q10. | 4 | (a) | | rus: cell with particles e.g. smoke (container must be closed) in showing suitable arrangement with light illumination and microscope | B1
B1 | [2] | |------|-------|--------------|---|----------------|------------| | | (b) | | / flashes of light
om motion | M1
A1 | [2] | | | (c) | | see what is causing smoke to move hence molecules smaller than particles | (B1) | | | | | continu | ous motion of smoke particles implies continuous motion of molecules | (B1) | | | | | random | motion of particles implies random motion of molecules | (B1) | | | | | | | max. 2 | [2] | | Q11. | | | | | | | 5 | i (a) | | metal: crystalline / lattice / atoms in regular pattern (atoms in regular) pattern that repeats itself (within crystal) polymer: long chains of atoms / molecules chain consists of 'units' that repeat themselves | B1
B1
B1 | [2]
[2] | | | (b) | (i)
(ii) | e.g. latex is soft / not strong / flows / ductile elastic limit easily exceeded (allow any two sensible comments, 1 each) more solid / does not flow / stronger / higher ultimate tensile stress more brittle elastic limit much higher increased toughness (any two, 1 each) | B1
B1 | [2] | | Q12. | | | | | | | 5 | (a) | | rard / random / erratic / zig-zag movement
ske) particles (do not allow molecules / atoms) | M1
A1 | [2 | | | (b) | | is due to unequal / unbalanced collision rates (on different faces) al collision rate due to) random motion of (gas) molecules / atoms | B1
B1 | [2 | | | (c) | either
or | collisions with air molecules average out this prevents haphazard motion particle is more massive / heavier / has large inertia (M1) collisions cause only small movements / accelerations (A1) | M1
A1 | [2 | Q13. | 2 | (a) | (i) | the | hase) change
ermal energy
o not allow 'co | required | to mainta | in cor | our
nstant ter | nperature | | | B1 | [1] | |------|-------|--------|-------------------|---|-------------------------|---|-----------------|-------------------|-----------|----|----------------|------------|-------| | | | (ii) | bo
e.g. ev | aporation tak
illing takes pla
aporation occ
illing occurs a | ace in boo | dy of the I
temperat | liquid
tures | | | | l
l | B1
B1 | [4] | | | (b) | (i) | volume | $e = (\frac{48}{4.5} =)$ | 10.7 cm ³ | | | | | | | A 1 | [1] | | | | (ii) | = 1.8 :
2 sepa | me = 10.7 / (
× 10 ⁻²³ cm³ .
aration = ³ √(| 1.8 × 10 ⁻² | | | | | | | | [1] | | | | | = 2.6 | × 10 ⁻⁸ cm | | | | | | | / | A1 | [1] | | | | | | | | | | | | | Г | Γotal | l: 8] | | Q14. | | | | | | | | | | | | | | | 2 | crys | tallin | lone | ms / ions / pa
g range order | / orderly | 10.00 | arrar | ngement | | | į | В1 | | | | poly | mer: | 16 | tice) repeats i
g chain moled | | ains of m | onom | ers | (1) | | | В1 | | | | amo | orpho | ous: disc | ne cross-linki
ordered arran
ordering is s | gement d | of molecu | | | | | 1 | В1 | | | | (thre | ee 'B | 1000000 | plus any othe | | 500 | | | (1) | | 1 | B2 | [5] | | Q15. | | | | | | | | | | | | | | | 1 | (a) | den | sity = ma | ass / volume | | | | | | | В1 | [1 | 1] | | | (b) | | | juids and solid | | | | | to about | 2× | В1 | | | | | | or d | ensity of | gases much | lower her | nce spacir | ng mu | ch more | | | B1 | [2 | 21 | | | (c) | (i) | density | = 68 / [50 × 6
= 2520 (allow | 600 × 900
v 2500) kç |) × 10 ⁻⁹]
g m ⁻³ | | | | | C1
A1 | | 21 | | | | (ii) | | <i>A</i>
× 9.81 / [50 ×
! × 10 ⁴ Pa | 600 × 10 |) ⁻⁶] | | | | | C1
C1
A1 | | 31 | Q16. | 3 | • (| (a) p | oressure = force / area | | В1 | [1] | | |------|--|-------|--|--|----------------|-----|--| | | (| ı | nolecules collide with object / surface and rebound nolecules have change in momentum hence force acts | | B1
B1 | | | | | fewer molecules per unit volume on top of mountain / temperature is less hence lower speed of molecules hence less pressure | | | | | | | | | (| (c) (| i) $\rho = m/V$
$W = V\rho q = 0.25 \times 0.45 \times 9.81 \times 13600$
= 15000 (15009) N | | C1
C1
A1 | [3] | | | | | (i | i) $p = W/A$ (or using $p = \rho gh$) = 15009 / 0.45
= 3.3 × 10 ⁴ Pa | | A1 | [1] | | | | | (i | i) pressure will be greater due to the air pressure (act | ing on the surface of the lig | juid)
B1 | [1] | | | Q17. | | | | | | | | | 3 | (a) | met | or long range order (of atoms / | molecules / ions) | В1 | | | | | polyi | | atoms / molecules / ions) apphous: disordered / irregular arrangement | tangled chains (of atoms / molecules) or long chains (of atoms / molecules / ions) disordered / irregular arrangement or short range order | В1 | | | | | | | (of atoms / molecules / ions) | | B1 | [3] | | | | (b) | | al: straight line or straight line then curving with less pomer: curve with decreasing gradient with steep increa | | B1
B1 | [2] | | | Q18. | | | | | | | | | 1 | 1 volume = $\pi (14 \times 10^{-3})^2 \times 12 \times 10^{-3} (=7.389 \times 10^{-6} \text{ m}^3)$
density = mass / volume [any subject] | | | | | | | | | | | = $6.8 \times 10^3 \times 7.389 \times 10^{-6} = 0.0502$
t = mg
= $0.0502 \times 9.81 = 0.49$ N (mark not awarded if not | | C1
A1 | [4] | |